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INVITED ARTICLE

Cholesteric helix: topological problem, photonics and electro-optics

Lev M. Blinova,b* and Serguei P. Paltob

aShubnikov Institute of Crystallography RAS, 119333, Leninsky Prospect 59, Moscow, Russia; bPhysics Department, Calabria

University, Rende, 87046, Italy

(Received 10 December 2008; final form 19 January 2009)

Using numerical simulations and the results of our experiments we discuss the behaviour of a defect-free cholesteric
liquid crystal in rather a strong electric field. The smooth helix unwinding predicted by de Gennes (Solid State
Commun. 1968, 6, 163,) occurs under the thermodynamic equilibrium conditions and can easily proceed with the
assistance of multiple defects. The defect-free helix in the field strictly perpendicular to the helical axis cannot be
unwound for topological reasons. The field deforms the helix without a change of its period and induces higher
harmonics of the helical structure. Due to the latter, the shape of the Bragg photonic stop-band changes and a
second-order photonic band is observed in the optical transmission. Moreover, novel laser effects are predicted by
modelling for the dye-doped, distorted cholesteric structure. The same field-induced anharmonicity results in a
strong change of the polarisation state of the beam passing the helical structure along its axis. Due to fast relaxation
of the higher harmonics, the switching time of the devices using the corresponding electro-optical effect (called in-
plane switching) can be improved significantly. This is shown both experimentally and by numerical calculations.

Keywords: liquid crystals; laser; electro-optics

1. Introduction

The influence of the works of the Orsay Liquid Crystal

Group on the development of the physics of liquid

crystals all over the world is enormous. In the epicentre

of the vigorous activity of the group, especially in late

1960s and 1970s, was the giant figure of P.G. de Gennes.

His personal contribution in just two years (1968–69) is

unbelievable; see (1): the prediction of the transition

from cholesteric to nematic structure (1a); description

of the director fluctuations in nematics, both static (1b)

and dynamic (1c); development of the phenomenologi-

cal theory of isotropic liquid – nematic phase transition

(1d); formulation of basic equations for SmA elasticity

and description of the flexoelectric effect in the SmA

phase (1e). All of these papers became classical.

Both present authors have had the pleasure of

working in the Orsay laboratory with the people from

the famous group for, regrettably, a quite short period.

The older of us was acquainted with Pierre Gilles and

for all of his life was under the strong influence of his

scientific and artistic talent. So we are happy to present

this paper as our modest contribution to the memorial

book. In this paper, we will present some new data and

ideas related to one of the seminal articles written by

P.G. de Gennes at the beginning of his fruitful work in

the field of liquid crystals (1a).

The plan of the paper is as follows. First, we recap

on the essence of the cholesteric helix unwinding

effect. Then we discuss some limitations of the

thermodynamic approach when we deal with a

defect-free helix in the field perpendicular to the heli-

cal axis. We show some experimental results and

corresponding modelling. Next, we examine optical

transmission of and lasing in the field-distorted helix

in terms of the higher-order photonic stop-bands. The

simulation results may be useful for lasers and other
photonic devices. Finally, we describe a new electro-

optical effect based on the field induced anharmoni-

city in a helical structure that shows a high contrast

and short switching times, down to the microsecond

range, suitable for fast light modulators and displays.

2. Untwisting of the cholesteric helix

2.1 de Gennes model

de Gennes (1a) has considered an unlimited cholesteric

with a helix axis (h|| z) in magnetic field H perpendi-

cular to h (Figure 1(a)). The magnetic anisotropy is

positive �a = �||-�\ . 0. The critical field for the helix

unwinding can be calculated from the difference
between the free energy density of the cholesteric and

nematic structures, which is:

�g ¼ gCh � gN ¼
1

2
K22

d�

dz
� q0

� �2

��aH2 cos2 �

" #

� 1

2
K22 �q0ð Þ2��aH2
h i

¼ 1

2
K22

d�

dz

� �2

�2q0
d�

dz

" #
þ 1

2
�aH2 sin2 �; ð1Þ
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where q0 = 2�/P0 corresponds to a wavevector of the

helical distribution with a pitch of P0, and’ is the twist

angle describing the helical distribution of the director
in the field-off state. It also equals an angle between

the director and the field. Note that, for an unwound

cholesteric, @’/@z = 0, ’ = 0 or �. Introducing the field

coherence length � (�2 ¼ K22=�aH2) and integrating

over one period of the helix P0 along the z-axis we get:

�G

�aH2
¼ 1

�aH2

ZP0

0

�gdz ¼

¼
ZP0

0

1

2
�2 d�

dz

� �2

� q0�
2 d�

dz
þ 1

2
sin2 �

" #
dz ð2Þ

where �G is the difference in total free energy attrib-

uted to a volume on a scale of pitch P0.

The Euler–Lagrange equation corresponding to

the free energy density of the cholesteric structure
reads:

�2 d2�

dz2
¼ sin� cos� or

1

2
�2 d

dz

d�

dz

� �2

¼ sin� cos�
d�

dz
: ð3Þ

Equation (3) is easily integrated:

�2 d�

dz

� �2

¼ 2

Z
z

sin� cos�
d�

dz
dz

¼ 2

Z
�

sin� cos�d� ¼ sin2 �þ C: ð4Þ

For the particular periodic structure shown in

Figure 1(a), the derivative d’/dz = 0 at any z where ’
= 0 or � (middle points in regions A). Therefore, C = 0

and �(d’/dz) = �sin’, where for a right-handed helix

the sign at the right site is either positive (if ’ belongs
to an interval from 0 to �) or negative (if �, ’, 2�).

Then, substituting Equation (4) into Equation (2) we

find:

�G

�aH2
¼
ZP0

0

�2 d�

dz

� �2

� q0
d�

dz

" #
dz ¼

¼ �2

Z2�
0

d�

dz
� q0

� �
d� ¼

¼ 2�

Z�
0

sin� d�� q0�
2

Z2�
0

d� ¼ 2�ð2� �q0�Þ: ð5Þ

Therefore the threshold condition (�G = 0) for the

helix unwinding or the cholesteric nematic transition

reads

�u ¼
2

�q0
or Hu ¼

�2

P0

ffiffiffiffiffiffiffiffi
K22

�a

s
: ð6Þ

Moreover, for H , Hu, de Gennes has estimated sta-

tionary values of the pitch and predicted its monotonic

increase with increasing field:

PðHÞ ¼ P0 1þ �2
aP2

0

32ð2�Þ4K2
22

H4 þ ���
" #

ð7Þ

The resulting Equation (6) and Equation (7) are in
very good agreement with experiments fulfilled under

thermodynamic equilibrium. Figure 1(b) shows the

results obtained by R.B. Meyer (2) on rather a thick

cell (d = 130 �m) filled with a cholesteric mixture based

on p-azoxyanisol (PAA). The mixture was not

Figure 1. (a) de Gennes model. Influence of a magnetic field H on the planar cholesteric texture having �a . 0. The helical
axis is parallel to z. Horizontal lines show the projections of the director onto H. (b) Dependence of helix pitch ratio (P/P0)
on the normalised magnetic field strength with the de Gennes theoretical curve superimposed on the experimental points (PAA,
d = 130 �m, P0 = 13 �m, Hu = 8.4 kG (2)).
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oriented by boundaries and contained a number of

defects. Meyer mentioned that, in order to reach the

equilibrium state for each value of magnetic field, ‘the

tendency to hysteresis was overcome by cycling

the field while observing the cell’. This comment is

very important because the hysteresis is a fingerprint

of the topological constraints and observed many
times, see e.g. (3). We shall come to these constraints

below. In another experiment (4), the smooth, hyster-

esis-free unwinding of the helix was observed in the

wedge-shaped cells with the well-known Grandjean dis-

clinations. However, if we deal with a sample free of any

defects and, in addition, with the field exactly perpen-

dicular to the helical axis, a step-like transition to the

uniform state occurs even in the unlimited samples.
For the electric field, in Equations (6) and (7) we

should substitute �a with "a/4�. Therefore, if we apply

an electric field (more convenient for practical pur-

poses) to a real cholesteric sample for a sufficiently

long time, eventually we would expect the helical pitch

of the sample to change according to Equation (7).

Such a field-induced pitch tuning would be very pro-

mising for application to displays, tunable photonic
filters, diffraction gratings and lasers. Unfortunately,

pitch tuning may be realised only via an intermediate,

very slow stage of the defect formation.

2.2 Topological limitation

What is the reason for such a disappointing situation

with tuning? It is very simple: despite the fact that field
unwinding of the cholesteric helix is thermodynami-

cally profitable there is a strong topological limitation

on a smooth (continuous) unwinding process. This

can be easily understood. In a zero electric field E,

see Figure 2(a), we again have a helical structure of

the director n (shown by arrows) with vertical helical

axis h. We assume that the helix is either infinite or

limited by two boundaries with infinitely weak azi-

muthal anchoring at least at one of the boundaries. It

means that there is no confinement, which would pre-

vent a free rotation of the non-anchored director at

that boundary. Therefore unwinding the helix due to,

for instance, a heating process is possible (5). Now,
imagine that we apply an electric field E\h to struc-

ture (a) with the aim of increasing the pitch twice, PE =

2P0, as shown in Figure 2(b). To do this we must turn

the director from the central position A’ with n||E

(favourable due to "a . 0) to unfavourable position

B, where n\E, and this situation repeats in each per-

iod. Moreover, n must make a full turn against the field

on transition from the initial position A (at the bot-
tom) to new position A’. Therefore, a very serious

topological problem exists for the ideal cholesteric.

In reality, the structure shown in Figure 2(c) forms

with favourable orientation of the director everywhere

except for the walls. The positions of the walls, W,

separating areas where n differs by � are fixed and the

energy of the structure (c) with the conserved pitch P0

is, of course, larger than the most profitable stationary
structure with an enhanced pitch calculated by de

Gennes.

The scenario described has been confirmed by both

experiment and numerical modelling (6). For the lat-

ter, the software used was developed earlier (7, 8). For

experiments, a cell, shown in Figure 3, was designed

with electric voltage applied between the in-plane

interdigitated electrodes separated by a distance of
20 �m. The dielectric anisotropy of the cholesteric

was "a = +7.8. The same cell structure and material

parameters were assumed in modelling.

In calculations, both the zenithal and azimuthal

anchoring strength at the bottom substrate is strong,

Wz1 = Wa1 = 0.1 mJ/m2. At the upper substrate the

•

•

•

A

A’

B

B ’

A

W

W

E

(a) (b) (c)

P0 B

A’

A

n

Figure 2. Non-equilibrium field behaviour of a cholesteric
helix ("a . 0). (a) Zero-field structure. (b) Unfavourable
structure with a hypothetical pitch PE = 2P0. (c)
Favourable wall structure with unchanged pitch and
multiple walls.

Figure 3. Helical structure of a cholesteric liquid crystal
between two glass plates. On the bottom plate, an array of
metal interdigitated electrodes is deposited.
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zenithal anchoring energy Wz2 is also that strong,
therefore the director is always confined within the

plane of substrates perpendicular to the helical axis.

However, the azimuthal anchoring energy at the sec-

ond substrate is negligibly small, Wa2=0.001 mJ m-2,

and provides conditions for easy sliding of the director at

the substrate surface. Figure 4 shows the calculated

distribution of the azimuthal angle ’ for the planar

cholesteric structure of thickness d = 25P0 with P0 =
0.25 �m (only two periods are shown for clarity).

Without field the azimuth linearly increases from 0�

to 360� within each period P0. With increasing voltage

the dependence ’(z) becomes strongly non-linear due

to distortion of the helix, but the period of the struc-

ture remains almost unchanged. Only a small overall

shift of the curves along the z-coordinate appears due

to weak (few degrees) sliding of the director at the top
boundary. This shift results in some decrease of the

helix pitch, but this decrease cannot exceed a value of

P0/4N, where N is the number of turns. Therefore we

conclude that the ideal helix cannot be unwound by

E\h without nucleation of defects due to thermal

fluctuations or other non-homogeneities (for instance

at anchoring boundaries).

3. Field induced anharmonicity

3.1 Spectra of the photonic stop-band

The optical transmission of non-polarised light has

been calculated for the same distorted texture within

the spectral range of the Bragg reflection (see Figure 5).

The refraction indices were taken from the experi-

ment, n|| = 1.550, n\ = 1.474. With increasing field,

the Bragg minimum shifts slightly to shorter wave-

lengths due to the helix distortion seen in Figure 4.

Finally the stop-band completely disappears due to

helix unwinding at a field of about 25 V �m-1, which

is much higher than the value predicted by Equation

(6). In fact, the high-field simulated unwinding is

caused by finite space sampling �z along the z-axis

that is necessary for numerical calculations. When a

size of the walls W (Figure 2(c)) becomes comparable

with the discrete value of �z the calculation accuracy

decreases, which results in an apparent ‘untwisting’
effect. Decreasing �z increases the unwinding field. In

some sense, a finite value of �z numerically mimics a

‘defect’, which allows overcoming the mentioned

topological constraints.

We have carried out a special experiment to check

the results of our modelling. A chiral mixture of

MLC6601 + 21.7% ZLI-811 (both from Merck) was

used with P0 = 0.42 �m (@P0/@T , 0), "a � 6, K22 �
6 pN, n|| � 1.55, n\ � 1.47. The interdigitated electro-

des (Figure 3) were covered with polyimide but not

rubbed to reduce the azimuthal anchoring energy Wa2

to a minimum. This should allow the director to rotate

freely within the plane of the cell at the bottom inter-

face. The top glass substrate was covered with poly-

imide and rubbed to provide good quality planar

helical texture. The gap between glasses (d = 12 �m)
was filled with the mixture in the isotropic phase. To

avoid any thermal and hydrodynamic processes an

optimum frequency of external field was chosen

of 500 Hz, the voltage U(rms) being varied from

0 to 120 V.

Figure 6 shows the results of our experiment. As

seen from the figure, with increasing field the Bragg

minimum broadens and finally disappears. The field
necessary for the complete disappearance of the Bragg

reflection (about 6 V �m-1) approximately corre-

sponds to the estimated critical field Ec = (�2/

P0)(4�K/"a)1/2� 7 V �m-1. However, no shift to longer

wavelengths is seen, which would be indicative of helix

3.2 3.4 3.6 3.8 4.0
0

90

180

270

360
P0 = 2.5 μm
d = 4 μm
K22 = 9 pN
εa = +7.8

500 V

389 V
222 V

55 V
U = 0

2nd boundary
A

ng
le

 φ
 (d

eg
)

z-coordinate (μm)

Figure 4. Director azimuth ’ for the last two periods of the
helix adjacent to the top boundary. It repeatedly increases
from 0 � to 360� within each period P0.
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Figure 5. Calculated optical transmission spectra of the
planar cholesteric texture as functions of the electric
voltage applied (unpolarised light).
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unwinding. On the contrary, there is a small shift to
shorter wavelengths predicted by modelling. Under a

microscope the field-induced grid of defects is seen at a

voltage exceeding 70 V.

Our conclusion from both the experiment and the

modelling is that, in the absence of defects, the field

cannot increase the period of the helix. Therefore, the

helix unwinding effect cannot be used for fast switch-

ing of the spectral position of the photonic stop-band,
at least, over such a large wavelength range as follows

from the expected ratio of P/P0 = 1.6 (see Figure 1(b)).

Indeed, it would open almost the whole visible range

of � = 400–600 nm for tuning lasers on cholesteric

liquid crystals. In reality, we may only use the small

shift of the long-wave edge of the photonic band to the

longer wavelengths that is seen in Figure 5. It is also

possible to use a small red shift of the band due to
tuning the helical axis direction (9) or changing the

shape of the photonic band for rather limited tuning of

the wavelength of lasing (10). Fortunately, there is a

possibility for designing multilayer cholesteric–

nematic lasers, in which a function of electric field

tuning of laser intensity and wavelength is transferred

from a cholesteric to a nematic layer (11).

3.2 Fourier transform of director distribution

As seen in Figure 4, a sufficiently strong electric field

perpendicular to the helical axis causes a snake-like

distortion of the director field with the pitch of the

helical structure remaining unchanged. The distribu-

tion of the x- and y-components of the director is no

longer described by a simple sine law but contains a

contribution of higher harmonics:

nxðzÞ ¼ A1;x sinðq0zÞ
þ
X

m

Am;x sinðmq0zÞ þ Bm;x cosðmq0zÞ
� �

nyðzÞ ¼ A1;y sinðq0zÞ
þ
X

m

Am;y sinðmq0zÞ þ Bm;y cosðmq0zÞ
� �

: ð8Þ

Due to the sine form of the initial distribution of
the director and quadrupolar character of its coupling

to the electric field, the odd harmonics will be dom-

inating (m = 2k + 1, where k = 1, 2, 3, . . .). The

amplitudes of the harmonics characterise a degree of

the field-induced anharmonicity of the helical

structure.

We have made a simulation of the higher harmo-

nics appearance and optical properties of the choles-
teric structure with the following parameters typical of

chiral materials based on the well-known nematic mix-

ture E7: helical pitch 0.4 �m, elastic modulus K22 =

5 pN; principal dielectric permittivity values "|| = 20,

"\ = 8; refraction indices n|| = 1.7, n\=1.5. Cell thick-

ness is d = 10 �m, zenithal and azimuthal anchoring

energies is strong (Wz,a = 0.1 mJ m-2) at both bound-

aries. The electric voltage is applied across the in-plane
electrodes separated by a distance of l = 20 �m (see

Figure 3). The helix is confined by two glasses with

refractive index ng = 1.5.

The inset in Figure 7 shows the calculated space

dependence of the x-component of the director nx(z)

within one period of the cholesteric structure. The
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 (%
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Figure 6. Experimental transmission spectra of the planar
cholesteric texture as function of the external field
(unpolarised light). The absolute value of the transmission
is reduced by the system of non-transparent interdigitated
electrodes. Note a small shift of the Bragg minimum to
shorter wavelengths.

4.0 4.2 4.4
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U = 0
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Figure 7. Inset: calculated space dependence of the x-
component of the director nx(z) within one period of the
cholesteric structure with P0 = 0.4 �m. Main plot: Fourier
transform nx(q) showing appearance of the third harmonic
of the helix in a strong field. In both plots solid lines
correspond to zero voltage, dot (or dash) curves for U =
200 V. For parameters see the text.
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voltage applied to the in-plane electrodes is either 0 or

200 V (E = 10 V �m-1). As expected, at the field

applied, the apices of the curve nx(z) for U = 200 V

become very flat. The main plot of Figure 7 represents

the Fourier transform of nx(q/2�). In the field absence,

on the wave vector axis, the helix is represented by a

single harmonic at q/2�= q0/2�= 1/P0 = 2.5 �m-1. At a
high voltage, a strong third harmonic of the distorted

helix appears at q/2� = 3q0/2� = 3P0 = 7.5 �m-1. The

amplitude of the third harmonic reaches a value as

high as 27% of the first harmonic amplitude at zero

field. Note that the characteristic relaxation time of

any elastic distortion mode is described by the univer-

sal formula 	 = 
/Kq2, where 
 is a rotational viscosity.

Therefore the third harmonic of the distortion should
relax nine times faster than a distortion on the helix

pitch scale. This fact is of principal importance for the

fast devices based on the helix anharmonicity.

3.3 Second order photonic band

The helix distortion influences the optical properties of

the helical structure; in particular, the field should
induce higher harmonics in the transmission and reflec-

tion spectra. This phenomenon had been observed long

ago with the help of the electro-transmission technique

(9), but only recently did we understand that it might be

very interesting for application to photonics. Indeed,

with an experimental cell of the type shown in Figure 3,

one can observe several spectacular effects. For exam-

ple, if the cholesteric is doped with a luminescent dye
and the dye is pumped by a light within the dye absorp-

tion band, one can observe a light amplification or

lasing effect not only at the edge of the photonic band

but at other frequencies as well. To this effect, the pump

energy should be sufficient to create the inverse electron

population between the two appropriate (lasing) levels.

First, we calculated the field-induced transmission

spectra without amplification (in the so-called cold
regime). They are shown in Figure 8. For calculations,

it was assumed that a circularly-polarised, slightly

incoherent probe beam impinges on the helix along

its axis. The latter allows escaping a Fabri–Perot effect

caused by thick glass substrates confining the choles-

teric layer. In zero field, the cold structure shows a

typical Bragg reflection (photonic stop-band),

Figure 8(a), centred at �1 � 640 nm with no trace of
higher orders. With increasing field, Figure 8(b,c), a

new structure (an explanation is given below) appears

within the Bragg band and a sharp minimum develops

corresponding to the second order reflection at 320

nm. The transmission is almost completely suppressed

within a narrow spectral band centred at �2� 320 nm.

It means that all of the light of the probe beam within

this narrow band is reflected.

The appearance of the ‘second order’ reflection in

the spectrum is a fingerprint of the field-induced third

harmonic in the cholesteric helix shown in the Fourier

spectrum (Figure 7). It can be understood in terms of

the scattering amplitude approach discussed by de

Gennes and Prost (12). The light scattering amplitudes

are proportional to Fourier components of the dielec-
tric tensor "(q), where now q = k0-k1 is the scattering

wavevector. All three vectors q, k0 (for incident wave)

and k1 (for reflected wave) are parallel to the helix axis

z and q0 . 0 means the right-handed helix. The com-

ponents of the local dielectric permittivity tensor are as

follows:

"ij ¼ "?�i;j þ "a ni nj; ð9Þ

where ni are director components with i,j P{1,2,3).

Following de Gennes and Prost we restrict our analy-

sis to considering only a single ("xx) component of the

dielectric tensor.
For the cholesteric helix distorted by an electric

field applied along the x-axis, the z-dependence of

the "xx component with allowance for the field-

induced third harmonic in the director distribution

can be written as:
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Figure 8. Calculated transmission spectra of the first and
second order photonic bands for three values of the applied
field shown in the figures (absorption coefficient � = 0).
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"xxðzÞ ¼ "? þ "an2
xðzÞ ¼ "? þ "aðA1 cosðq0zÞ

þ A3 cosð3q0zþ ’0ÞÞ2; ð10Þ

where ’0 is a phase shift between the third and first

harmonics. From the condition nx = 0 at q0z = �/2 + k�
(here k is an integer number) for both non-distorted

and distorted helix, we find ’0 = 0. Thus for the

Fourier component "xx we have:

"xxðqÞ ¼
Z
z

"xxðzÞeiqzdz

¼ "a

Z
z

A1 cosðq0zÞ þ A3 cosð3q0zÞð Þ2eiqzdz ¼

¼ "a

A2
1

4
þ A1A3

2

� � Z
z

eið2q0þqÞz þ eiðq�2q0Þz
	 


dz

þ "a

A1A3

2

Z
z

eiðqþ4q0Þz þ eiðq�4q0Þz
	 


dz

þ "a

A2
3

4

Z
z

eiðqþ6q0Þz þ eiðq�6q0Þz
	 


dz: ð11Þ

Equation (11) shows that the integral is not zero only if

q = �2q0, q = �4q0 and q = �6q0.

Restricting ourselves to linear optics when fre-

quencies of the reflected and incident waves are

equal, we take solutions for which the incident and

reflected light have wave vectors of opposite signs (k1 =
-k0). The latter gives an additional selection rule and

results in scattering vectors limited to a set of positive

values: q = +2q0, q = +4q0 and q = +6q0. The negative

scattering vectors are excluded, due to the equality of

frequencies mentioned. As q = k0-k1 and k1 = -k0,

from a set of scattering vectors q = +2q0, q = +4q0 and

q = +6q0 we get three frequency bands corresponding

to incident light wave vectors: k0 = q0, k0 = 2q0 and k0 =
3q0. We use term ‘frequency bands’ because, in cho-

lesteric media, the local refractive index is varied from

n\ to n|| and there are many frequencies !within ck0/n||

and ck0/n\, where c is light velocity in vacuum, corre-

sponding to wave vector k0.

It is important to mention that if A3 = 0 (non-

distorted helix) then only the first optical band (k0 =

q0) is allowed, which is centred at a vacuum wave-
length � = 2�,n./q0 ; ,n. P0, where ,n. is an

average refractive index. The presence of the third

harmonic (A3 � 0) in the director field distributions

allows for the second (k0 = 2q0, �= ,n.P0/2) and

third (k0 = 3q0, �= ,n.P0/3) bands centred at the

double and triple optical frequency respectively. The

second photonic band (at �= 320 nm) is a result of

optical mixing of the first and second harmonics in the

distorted helix. This mixing is a consequence of the

non-linear relation (Equation (9)) between the dielec-

tric tensor components and the director field distribu-

tion. Moreover, according to the first integral at the

right side of Equation (11), the mixing effect also

influences the principal photonic band by the appear-

ance of the pronounced minimum in the transmission
seen well in Figure 8(c) at � = 640 nm.

3.4 Lasing

We have also calculated the field-induced lasing spec-

tra for an amplifying (with negative absorption or

gain) cholesteric layer. Locally, the gain is introduced

as a positive gain index � in an exponentially
increasing function exp(�x) with distance x exactly

as the absorption coefficient k enters the Buger law

exp (-kx) for a uniform medium.

Figure 9 shows the amplified transmission spectra

(AT) near both the first and second order Bragg bands

calculated for a cholesteric having gain coefficients (�|| =

0.2 �m-1, �\ = 0). At zero field (Figure 9(a)), the

helix is undistorted and we observe multimode lasing
at the long-wave edge of the first order Bragg band (a

single mode laser generation can be obtained at a

lower gain coefficient of the order of � � 0.01 �m-1.
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Figure 9. Calculated amplified transmission spectra of the
first and second order photonic bands for three values of the
applied field (gain coefficient � = 0.2 �m-1).
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No trace of lasing is seen at �2 � 320 nm. With increas-

ing field, at a certain critical value of Ec � 5.5 V �m-1

the lasing appears at the second order photonic band

(Figure 9(b)). At a higher field a sharp lasing line is seen

at the long-wave edge of the second order band

(Figure 9(c)). It could be a single mode lasing if the

spectral range of the negative absorption were limited to
the wavelengths of, say, 320–340 nm. As to the experi-

ment, it can be done using any standard laser (e.g. N2

laser) as a pump source, a laser dye absorbing the pump

energy and a cholesteric liquid crystal with a helical

pitch tuned so that the second order band would coin-

cide with the dye luminescent band.

It may seem that an electric field of about 10 V

�m-1 necessary for this sort of experiment is too high.
Indeed, according to the de Gennes formula (Equation

(6)), the helix is unwound at about Ec � 7 V �m-1.

However, we should not forget that in the absence of

defects, the cholesteric–nematic transition would not

occur at all. In a more realistic situation, some defects

are always present, but the process of helix unwinding

is very slow (seconds or minutes). To our experience,

at low repetition frequency ,10 Hz and duration of
electric field pulses less than 1 ms, one can escape

defects nucleation, and the helix is still twisted even

at a field strength a few times higher than the critical

field discussed above. Therefore, for the strong helix

distortion and observation of the laser effect on the

second order stop-band, one has to use sub-millise-

cond field pulses synchronised with optical pumping

pulses. Note that the breakdown voltage also increases

with pulse shortening.

4. Electro-optics of the distorted helix

4.1 The principle

The director orientation effects in liquid crystals, due

to anisotropy of dielectric and optical properties of the

latter, can be used for the control of light polarisation
by an electric field. In particular, the electro-optical in-

plane switching (IPS) mode is widely used in displays

based on nematic and cholesteric liquid crystals (CLC)

manifesting texture transitions (13, 14). In both cases,

the switching times were not short enough. We suggest

using field-induced anharmonicity of the cholesteric

helix to reduce considerably the device response time

in IPS mode.
Figure 10 shows an example of the simulated evo-

lution of the light polarisation states at an output of

e

y
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e
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x

e

y

x

E = 0 

0.0

0.2
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0.6
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F n
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3rd field-induced
harmonic  

0 2 4 6 8 10
z–1, μm–1

0.0
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0.4

0.6

0.8

F n
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Figure 10. Poincare sphere presentation of light polarisation states at the output of a cholesteric liquid crystal layer upon
increasing the in-plane electric field from 0 to 2 V �m-1 with a step of 0.05 V �m-1. Top insets show Fourier spectra of nx director
component at zero and maximum electric field.
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the cholesteric layer subjected to the in-plane electric

field along the x-axis. In this particular case, the helix

pitch and thickness of the layer are 1.2 �m and 8 �m

respectively. The calculations are done for a wave-

length of 550 nm. Typical values of CLC parameters

used are: dielectric anisotropy "� = 15, optical aniso-

tropy �n = 0.2, twist elastic constant K22 = 5 pN.
Here, an important issue is that even a small degree

of the induced anharmonicity (amplitude of induced

third harmonic is about 5% of the fundamental one;

see inset in Figure 10) results in dramatic changes in

the polarisation of the light transmitted by a choles-

teric layer. Increasing field from 0 to 2 V �m-1 covers a

continuous range of light polarisation states between

the two orthogonal polarisations represented by
opposite points on the Poincare sphere (Figure 10). It

is the essence of the new effect and the display based on

the latter (15).

According to data in Figure 10 the field-off polar-

isation state is linearly polarised (located at the equa-

tor on the Poincare sphere), so it can be completely

blocked by a properly oriented analyser placed at the

output of the layer. However, it is also important to
mention that, to achieve the proper linear polarisation

at the output, the linear polarisation at the input of the

layer should also be properly adjusted. In the given

example, in order to get the field-off state linearly

polarised along the x-axis, the light at the input should

be linearly polarised at an angle of –60� with respect to

the same x-axis. It means that a very high contrast

determined solely by the quality of polarisers can be
achieved at a particular wavelength, when the angular

positions of a polariser and an analyser are tuned

separately and very precisely. The second useful prop-

erty has been mentioned above: the relaxation time of

high harmonics of the helix is inversely proportional to

the square of the harmonic number, 	m / m-2.

Therefore, a fast, high-contrast light modulator can

be designed on the anharmonicity effect.

4.2 Modelling and experiment

For a study of the dynamics of the electro-optical

effect we use the same basic geometry of Figure 3.

However, now the helical pitch is larger (P0 . 1 �m)

and the Bragg stop-band is in the infrared range (�B1 =

,n.P0). The light of a He-Ne laser (� = 633 nm) is
transmitted through the cell along the helical axis, the

cell being placed between a polariser and an analyser.

Figure 11 shows the result of our modelling for the

following cell parameters: thickness d = 7.5�m, gap

between electrodes 20 �m, voltage U = 20 V, rubbing

direction at 45� to the electrode stripes, material rota-

tional viscosity 0.2 Pa�s, dielectric and optical aniso-

tropy "a = 12.1, �n = 0.19.

Our modelling shows that for each particular set of

the cell parameters there exists a unique, ‘magic’ com-

bination of the angular positions of polariser and

analyser, for which, at zero field, the outgoing light is

completely blocked. At the same time, a reasonable

field results in a high transmission (T) determined
solely by the analyser. For instance, for the helical

pitch of 2.5 �m the angles of the polariser and analyser

are ’1 = 83� and ’2 = 97� with respect to the field

direction (see inset in Figure 11) and we obtain T =

0.35 – 0.4 and contrast ratio K � 1000:1 (� = 633 nm,

E = 1 V �m-1). Corresponding switch-on and switch-

off times taken by convention between 10% and 90%

of the maximum transmission T are 	on = 	off � 2.3
ms. For exponential function e-t/	, the characteristic

time is 2.2 times less: 	 � 1 ms. For P0 = 1.25 �m the

contrast is almost the same (with ’1 = 65� and ’2 =

114� and E = 1.75 V �m-1) and switching times are

shorter, 	on � 	off � 0.5 ms (T = 10–90%). The corre-

sponding characteristic time is 	 � 0.23 ms.

From the analytic formula for the elastic relaxa-

tion time of different harmonics with number m,

	m ¼



K22m2q2
0

; ð12Þ

we find 	(m = 1,2,3) = 1.58, 0.395 and 0.175 ms,

respectively (for P0 = 1.25 �m and the same 
 and

K22 used in modelling). We can see that the time found

from modelling (0.23 ms) is close to the relaxation time
of the third harmonic (0.175 ms). Such a difference is

expected because the first harmonic of the helix was

also influenced by the field (it is increasing; see

0 10 20 30 40 50 60

0.0

0.1

0.2

0.3

0.4

 1.25 μm

P0 = 2.5 μm

T

Time (ms)

E

R

A P

Figure 11. Calculated optical response (absolute value of
transmission at � = 633 nm) of two cholesteric cells to the
voltage pulse in the in-plane switching mode. Equilibrium
pitches are 2.5 and 1.25 �m for the two cells.
Correspondingly, the applied voltages are 20 and 35 V.
Inset: angular directions of rubbing (R), polariser (P) and
analyser (A) with respect to the electric field E.
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Figure 7) and should participate in the overall switch-
ing process with a larger time 	(m = 1) = 1.58 ms. For

cholesteric with P0 = 2.5 �m, according to Equation

(12), the switching time should be four times longer

than for P0 = 1.25 �m; indeed, the ratio 2.3/0.5 = 4.6 is

close to the expected value.

The experimental results shown in Figure 12 agree

with the principal predictions of the simulation. The

experiment is made with the substance and cell para-
meters close to that used in modelling: P0 = 1.2�m, "a =

12.1 (at f = 1 kHz), optical anisotropy �n = 0.19, (at �=

589 nm), twist elastic coefficient K22 � 5 pN, twist

viscosity 0.2 Pa�s. With U = 20 V, ’1 = 39� and ’2 =

110� we obtain a contrast of 140:1, and switching times

	on = 1.8 ms, 	off = 0.9 ms (15). The switching-off

characteristic time 	 = 0.9/2.2 = 0.4 ms is much shorter

than the relaxation time of the first harmonic (1.58 ms)
but 1.7 times longer than our simulation result (0.23

ms). As to 	on, it is twice as large as 	off. This asymmetry

is not yet understood; it could be related to field inho-

mogeneity, insufficiently strong anchoring energy, or

the presence of some defects. Nevertheless, the switching

times are sufficiently short, for low-field (E� 1 V �m-1)

high-contrast liquid crystal modulators and shutters.

For shorter pitch materials we expect switching time to
be even less than 100 �s.

5. Conclusion

In conclusion, we have discussed optical and electro-

optical properties of the defect-free cholesteric in the

electric field strictly perpendicular to the helical axis.

This is an almost ideal case, which, however, can be

realised in practice. In thermodynamic equilibrium, as

is well known from the classical de Gennes work, the

electric field distorted helix has higher free energy in

comparison with the unwound helix. However, our

simulation and experimental work presented here

proves that, in the absence of defects, the helix cannot

be unwound for topological reasons. Instead, the field

deforms the helix without a change of its period and

induces high harmonics of the helical structure. It has

been shown that, due to the appearance of higher

harmonics, the shape of the photonic stop-band
changes and the second-order photonic band appears

in the optical transmission. We have also predicted a

laser effect on the second order photonic band in a

distorted cholesteric with negative absorption. Next,

our modelling shows that the field-induced anharmo-

nicity results in a strong change of the polarisation

state of the light beam passing the helical structure

along its axis. Because the field induces only the odd
harmonics in the helical structure they relax much

faster than the first (fundamental) one. It is proved

by the IPS experiments that the switching times of the

devices using the corresponding electro-optical effect

are reduced significantly.
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